Tag Archives: thinking about building cars

Foot problems are keeping me off the computer

Can’t take too long this time. In a nutshell I have been spending too much time sitting down, which makes my feet swell, which then makes my feet hurt, and so far the only relief I have found is lying down and elevating my feet.

And while I’m lying down, I think. It’s almost a reflex by now, the feet come up and the brain goes into gear. Since I’m lying down during the day I have light to read by and I bring a Speedway catalog with me. This at least keeps my mind from wandering off on tangents instead of solving problems that need solving for the least amount of money possible.

Something else I should mention is I won a $25 gift certificate to Speedwaymotors.com that had a limited lifespan, and I wanted a shift handle so I got the one in the link. The gift certificate covered all but $0.38 after the handle, shipping, and sales tax. So I have the style shift handle I always wanted for $0.38 out of my pocket.

And I just faceplanted in the keyboard again, so I’m calling an end to this post and time for bed. I guess I shoulda said I haven’t been sleeping well to go with the foot problems.

I’m awake during the day but still thinking

Ordinarily “Still thinking” would have the caveat “Take cover” but not so much today as what I’m thinking about is another A/MOD SCCA car. Basically what I’m thinking about is an LS style engine and a Powerglide transmission smack in the middle of a 72″ wheelbase and offset enough to the right to balance a driver to the left so the total polar moment is as low as possible for good transient handling. The chassis would be a semi-monocoque tub with a tube roll structure and subframes to tie everything together and if I did my sums right I’m looking at a 1000 pound as-raced weight, or about 100 pounds over the minimum. Combine this with the power and torque from the LS architecture V8 and forward progress would basically be limited by available traction, which would be limited by tire compound choice and footprint which would be limited by tire and wheel size, which would be limited by what’s available and unsprung weight considerations. So, basically a beastly quick car that was more limited by human reactions than the laws of physics.

The aluminum block LS engines all weigh within a few pounds of 415 minus the engine driven accessories. When those are stripped to the configuration for running in this car, which is basically water pump and alternator, I need to add those in and we’re looking at 450 for the engine. I have been watching enough videos to know that what I need for this car is a mild cam, a long runner intake manifold, and either tri-y or long tube 4 into 1 headers to get enough low end power that also doesn’t fall off as the RPM rises to redline, which are all included in the 450 pound engine weight. So add in the 76 pounds of Powerglide and you have 526 pounds of powertrain to moment out for left-right balance with the roughly 200 pound driver. Basic math tells us the driver has to be about 2½ times as far to the left as the engine is to the right, add in the widths of the engine and the driver’s legs which have to go to the left of the engine and a little algebra gets us the driver has to go 27.5″ to the left of the engine which is slightly to the left of the left side of the car. Going back and letting the top part of the engine hang a little over the driver’s legs and we get 24″ left offset if the engine sits with the bellhousing on the centerline. Again this places the driver outside of the car. Going to the minimum width of the driver the driver centerline has to be at least 7″ left of the engine minimum width which is 8″ to the left side of the engine so driver is -15 moment arm or -3000 moment to the engine. Solving for x gives us 3000/526 which is 5.7″ right going to the level of precision limit of the driver’s seat mount. The driver sits 9.3″ to the left of center, 15″ left of engine centerline. But doing the moments we get a moment of -1860 for the driver and a moment of 2998 for the engine and transmission which means the driver is not far enough to the left and the engine is too far to the right. But if the driver is 14.991″ to the left of center then the moments are equal which means I set the equation up wrong.

Going back to first principles (526*x)+(200*y) = 0 and also y = x-15 because the driver must be 15″ left of the engine, minimum. So substitution gives us (526*x)+(200*(x-15))=0 gives x=500/121 and y=15-(500/121) making x=4.13″ and y=10.87″, and dividing out gives the exact 2.63 ratio in moment arms. Which means I got the formula right this time. My butt would be just to the left of the bellhousing of the Powerglide, and my legs would be under the left cylinder bank with the exhaust manifold radiating heat over them. Bad for a street car, but for this it would be warm but tolerable. Combining my shoulder width with the offset the narrowest the car could be is 2*(10.87+11.25)=44.24 which means my right arm would be on the right side of the car… And the car would be 44¼” plus the width of the tires wide and 72″ plus the diameter of the tires long, aka tee-niney, aka a V8 powered gokart.